Position of particle on solid object
On the position page we derived an equation
for the linear position and on the orientation
page we derived an equation for the rotational position.
|
= |
|
+ |
sqrt(Az2 + Ay2) *
r sin(θ) + h*Ax |
sqrt(Az2 + Ax2) * r cos(θ)
+ h*Ay |
-Ax * r sin(θ)-Ay
* r cos(θ) + h*Az |
|
where:
- Px,Py,Pz = Cartesian coordinates of particle (absolute coordinates).
- Cx,Cy,Cz = Cartesian coordinates of centre of mass (absolute coordinates).
- Ax,Ay,Az = unit length vector giving direction of arbitrary axis which object
is rotating around.
- r = distance of particle from arbitrary axis.
- h = distance of particle along arbitrary axis.