# Maths - Dual Quaternions - Generating Multipication Table

The tables were generated using this program.

The output of this program is shown below. To produce the results the program needs to have an XML input code. At the bottom of this page I have listed this input code.

### Table for: Dual Quaternion

 a*b b.1 b.i b.j b.k b.ε b.εi b.εj b.εk a.1 1 i j k ε εi εj εk a.i i -1 k -j εi -ε -εk εj a.j j -k -1 i εj εk -ε -εi a.k k j -i -1 εk -εj εi -ε a.e ε -εi -εj -εk 0 0 0 0 a.ei εi ε -εk εj 0 0 0 0 a.ej εj εk ε -εi 0 0 0 0 a.ek εk -εj εi e 0 0 0 0

analysing commutivity: table does not commute: for example: i*j != j*i

analysing associativity: table does not associate, for example,
(i* j)* ε=k* ε=εk is not equal to i*(j* ε)=i*εj=-εk

## XML input code

To produce the results the program needs to have an XML input code listed here:

<classDef>
<outputTable type="product" format="html" name="octonion" analyse="on" enableLabels="on">
<mathTypeHypercomplex name="a" label="dualquaternion" type="dual" elementLabels="1,i,j,k,e,ei,ej,ek">
<mathTypeHypercomplex name="b" label="quaternion" type="complex" elementLabels="1,i,j,k">
<mathTypeHypercomplex name="c" label="complex" type="complex" elementLabels="1,i">
</mathTypeHypercomplex>
</mathTypeHypercomplex>
</mathTypeHypercomplex>
</outputTable>
</classDef>

back to original page