Axiom/FriCAS HTMLFormat Output

Here we have both normal text output and html text output turned on so that we can compare the results:

(1) -> )read axiom/testhtml1.input
)set output html on             
                                  
(x+y)*z                           
                           

   (1)  (y + x)z
(y+x) * z
         

                                                    Type: Polynomial(Integer)
(x-y)^2                                                                      
                                                                           

         2           2
   (2)  y  - 2x y + x 
y 2 - 2*x*y + x 2
                

                                                    Type: Polynomial(Integer)
integrate(x^x,x)                                                             
                                                                             

           x
         ++    %F
   (3)   |   %F  d%F
        ++    
x %F %F * d%F
                         

                                         Type: Union(Expression(Integer),...)
integral(x^x,x)                                                              
                                                                             

           x
         ++    %F
   (4)   |   %F  d%F
        ++     
x %F %F * d%F

                                                    Type: Expression(Integer)
(5 + sqrt 63 + sqrt 847)^(1/3)


         +----------+
        3|   +-+
   (5)  \|14\|7  + 5
3 14 * √7 + 5
                                                        Type: AlgebraicNumber
set [1,2,3]


   (6)  {1,2,3}
{
1,2,3
}


                                                   Type: Set(PositiveInteger)
multiset [x rem 5 for x in primes(2,1000)]


   (7)  {47: 2,40: 1,42: 3,38: 4,0}
{
47: 2
,
40: 1
,
42: 3
,
38: 4
,
0
}


                                                      Type: Multiset(Integer)
(8) ->
(8) -> )read axiom/testhtml2.input                                           
)set output mathml on                                                        
                                                                             
series(sin(a*x),x=0)                                                         
                                                                             

               3        5        7          9            11
              a   3    a   5    a    7     a     9      a      11      12
   (8)  a x - -- x  + --- x  - ---- x  + ------ x  - -------- x   + O(x  )
               6      120      5040      362880      39916800       
a*x
-
a 3
6
* x 3
+
a 5
120
* x 5
-
a 7
5040
* x 7
+
a 9
362880
* x 9
-
a 11
39916800
* x 11
+ O ( x 12 )
                                                                 

                       Type: UnivariatePuiseuxSeries(Expression(Integer),x,0)
matrix [ [x^i + y^j for i in 1..4] for j in 1..4]                            
                                                                             

        +             2        3        4 +
        |y + x   y + x    y + x    y + x  |
        |                                 |
        | 2       2    2   2    3   2    4|
        |y  + x  y  + x   y  + x   y  + x |
   (9)  |                                 |
        | 3       3    2   3    3   3    4|
        |y  + x  y  + x   y  + x   y  + x |
        |                                 |
        | 4       4    2   4    3   4    4|
        +y  + x  y  + x   y  + x   y  + x +
y+x y + x 2 y + x 3 y + x 4
y 2 + x y 2 + x 2 y 2 + x 3 y 2 + x 4
y 3 + x y 3 + x 2 y 3 + x 3 y 3 + x 4
y 4 + x y 4 + x 2 y 4 + x 3 y 4 + x 4

                                            Type: Matrix(Polynomial(Integer))
y1 := operator 'y


   (10)  y
y


                                                          Type: BasicOperator
D(y1(x,z),[x,x,z,x])


   (11)  y        (x,z)
          ,1,1,2,1



                                                    Type: Expression(Integer)
D(y1 x,x,2)


          ,,
   (12)  y  (x)

ⅆ2yⅆx2⁡x)


                                                    Type: Expression(Integer)
(13) ->

                                                                           

                       Type: UnivariatePuiseuxSeries(Expression(Integer),x,0)
series(1/log(y),y2=1)                                                        
                                                                             

            1
   (15)  ------
         log(y)
1
log ( y )
                           

                      Type: UnivariatePuiseuxSeries(Expression(Integer),y2,1)
y3:UTS(FLOAT,'z,0) := exp(z)                                                 
                                                                             

   (16)
                    2                            3
     1.0 + z + 0.5 z  + 0.1666666666 6666666667 z 
   +                                              
                                4                               5
     0.0416666666 6666666666 7 z  + 0.0083333333 3333333333 34 z 
   +                                                             
                                 6                               7
     0.0013888888 8888888888 89 z  + 0.0001984126 9841269841 27 z 
   +                                                              
                                   8                                  9
     0.0000248015 8730158730 1587 z  + 0.0000027557 3192239858 90653 z 
   +                                                                   
                                   10      11                          
     0.2755731922 3985890653 E -6 z   + O(z  )   
1.0 + z + 0.5 * z 2 + 0.1666666666 6666666667 * z 3 + 0.0416666666 6666666666 7 * z 4 + 0.0083333333 3333333333 34 * z 5 + 0.0013888888 8888888888 89 * z 6 + 0.0001984126 9841269841 27 * z 7 + 0.0000248015 8730158730 1587 * z 8 + 0.0000027557 3192239858 90653 * z 9 + 0.2755731922 3985890653 E -6 * z 10 + O ( z 11 )
                                                         

                                    Type: UnivariateTaylorSeries(Float,z,0.0)
c := continuedFraction(314159/100000)                                        
                                                                             

               1 |     1  |     1 |     1  |     1 |     1 |     1 |
   (17)  3 + +---+ + +----+ + +---+ + +----+ + +---+ + +---+ + +---+
             | 7     | 15     | 1     | 25     | 1     | 7     | 4  
3 +
1
7+
1
15+
1
1+
1
25+
1
1+
1
7+
1
4
                                                        

                                             Type: ContinuedFraction(Integer)
c := continuedFraction(14159/100000)                                         
                                                                             

           1 |     1  |     1 |     1  |     1 |     1 |     1 |
   (18)  +---+ + +----+ + +---+ + +----+ + +---+ + +---+ + +---+
         | 7     | 15     | 1     | 25     | 1     | 7     | 4  
1
7+
1
15+
1
1+
1
25+
1
1+
1
7+
1
4
                                             Type: ContinuedFraction(Integer)
c := continuedFraction(3,repeating [1], repeating [3,6])                     
                                                                             

   (19)
           1 |     1 |     1 |     1 |     1 |     1 |     1 |     1 |     1 |
     3 + +---+ + +---+ + +---+ + +---+ + +---+ + +---+ + +---+ + +---+ + +---+
         | 3     | 6     | 3     | 6     | 3     | 6     | 3     | 6     | 3  
   +                                                                          
       1 |                                                                    
     +---+ + ...                                                              
     | 6      
3 +
1
3+
1
6+
1
3+
1
6+
1
3+
1
6+
1
3+
1
6+
1
3+
1
6+
                                                                       

                                             Type: ContinuedFraction(Integer)
F := operator F                                                              
                                                                             

   (20)  F
F         
          

                                                          Type: BasicOperator
x4 := operator x                                                             
                                                                             

   (21)  x
x         
          

                                                          Type: BasicOperator
y4 := operator y                                                             
                                                                             

   (22)  y
y         
          

                                                          Type: BasicOperator
a := F(x4 z,y4 z,z^2) + x4 y4(z+1)                                           
                                                                             

                                    2
   (23)  x(y(z + 1)) + F(x(z),y(z),z )
x ( y ( z+1 ) ) + F ( x ( z ) , y ( z ) , z 2 )
                                

                                                    Type: Expression(Integer)
D(a,z)                                                                       
                                                                             

   (24)
                      2     ,                  2     ,                  2
     2zF  (x(z),y(z),z ) + y (z)F  (x(z),y(z),z ) + x (z)F  (x(z),y(z),z )
        ,3                       ,2                       ,1              
   +                                                                      
      ,           ,                                                       
     x (y(z + 1))y (z + 1)  
2 * z * x ( z ) y ( z ) z 2 + ⅆ1yⅆz1⁡z) * x ( z ) y ( z ) z 2 + ⅆ1xⅆz1⁡z) * x ( z ) y ( z ) z 2 + ⅆ1xⅆ y ( z+1 ) 1⁡ y ( z+1 ) ) * ⅆ1yⅆ z+1 1⁡ z+1 )
(1) -> )set output mathml on
(1) -> )library CLIF        
   CliffordAlgebra is now explicitly exposed in frame frame1 
   CliffordAlgebra will be automatically loaded when needed from 
      /home/martin/CLIF.NRLIB/CLIF                               
(1) -> B1 := CliffordAlgebra(2,Fraction(Integer),[[1,0],[0,1]])  

   (1)  CliffordAlgebra(2,Fraction(Integer),[[1,0],[0,1]])
                                                                 Type: Domain
(2) -> e(1)$B1                                                               

   (2)  e
         1
e 1
                     Type: CliffordAlgebra(2,Fraction(Integer),[[1,0],[0,1]])
(3) -> toTable(*)$B1                                                         

        + 1      e      e    e e +
        |         1      2    1 2|
        |                        |
        | e      1     e e    e  |
        |  1            1 2    2 |
   (3)  |                        |
        | e    - e e    1    - e |
        |  2      1 2           1|
        |                        |
        |e e    - e     e    - 1 |
        + 1 2      2     1       +
1 e 1 e 2 e 1 * e 2
e 1 1 e 1 * e 2 e 2
e 2 - e 1 * e 2 1 - e 1
e 1 * e 2 - e 2 e 1 -1

             Type: Matrix(CliffordAlgebra(2,Fraction(Integer),[[1,0],[0,1]]))
(4) ->


metadata block
see also:
Correspondence about this page

Book Shop - Further reading.

Where I can, I have put links to Amazon for books that are relevant to the subject, click on the appropriate country flag to get more details of the book or to buy it from them.

flag flag flag flag flag flag Axiom Volume 1: Tutorial. Documentation is freely availible from: http://www.axiom-developer.org/axiom-website/documentation.html

 

This site may have errors. Don't use for critical systems.

Copyright (c) 1998-2017 Martin John Baker - All rights reserved - privacy policy.