Derivation of angular velocity components (pqr) in body coordinates. This derivation applies to Euler angles relative to the right handed coordinate system defined by a set of axes fixed to the Earth. Yaw is the first rotation about the z axis, pitch is the second rotation about the y axis that formed following yaw, and roll is the third rotation about the x axis that was formed following pitch.
Yaw is the first rotation about the Earth's \hat{Z}_{E} Axis. This gives, \hat{X}_{1}, \hat{Y}_{1}, and \hat{Z}_{1} body axes in Earth coordinates:

$$
\begin{aligned}
& \hat{X}_{1} \\
& \hat{Y}_{1} \\
& \hat{Z}_{1}
\end{aligned}=|A| \cdot\left|\begin{array}{c}
\hat{X}_{E} \\
\hat{Y}_{E} \\
\hat{Z}_{E}
\end{array}\right|=\left|\begin{array}{ccc}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right| \cdot\left|\begin{array}{c}
\hat{X}_{E} \\
\hat{Y}_{E} \\
\hat{Z}_{E}
\end{array}\right|
$$

The $|\boldsymbol{A}|$ matrix is the direction cosine matrix and defines the axes components after the yaw rotation. The $|\boldsymbol{B}|$ and $|\boldsymbol{C}|$ matrices will define the axes components after the pitch and roll rotations. The Earth axes in \hat{X}_{1}, \hat{Y}_{1}, and \hat{Z}_{1} body coordinates are given by transposing the A matrix:

$$
\begin{align*}
& \hat{X}_{E} \tag{2}\\
& \hat{Y}_{E} \\
& \hat{Z}_{E}
\end{align*}=\left|A^{T}\right| \cdot\left|\begin{array}{c}
\hat{X}_{1} \\
\hat{Y}_{1} \\
\hat{Z}_{1}
\end{array}\right|=\left|\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right| \cdot\left|\begin{array}{c}
\hat{X}_{1} \\
\hat{Y}_{1} \\
\hat{Z}_{1}
\end{array}\right|
$$

This says that:

$$
\begin{align*}
& \hat{X}_{E}=\hat{X}_{1} \cos \boldsymbol{\psi}-\hat{Y}_{1} \sin \boldsymbol{\psi} \\
& \hat{Y}_{E}=\hat{X}_{1} \sin \boldsymbol{\psi}+\hat{Y}_{1} \cos \boldsymbol{\psi} \tag{3}\\
& \hat{Z}_{E}=\hat{Z}_{1}
\end{align*}
$$

Pitch is defined as the rotation about the new $\hat{\boldsymbol{Y}}_{1}$ axis that was created when we yawed about the \hat{Z}_{E} axis. We pitch about the \hat{Y}_{1} axis to get $\hat{X}_{2}, \hat{Y}_{2}, \hat{Z}_{2}$ body axes.

$$
\begin{align*}
& \hat{X}_{2} \tag{4}\\
& \hat{Y}_{2} \\
& \hat{Z}_{2}
\end{align*}=|B| \cdot\left|\begin{array}{c}
\hat{X}_{1} \\
\hat{Y}_{1} \\
\hat{Z}_{1}
\end{array}\right|=\left|\begin{array}{ccc}
\cos \boldsymbol{\theta} & 0 & -\sin \boldsymbol{\theta} \\
0 & 1 & 0 \\
\sin \boldsymbol{\theta} & 0 & \cos \boldsymbol{\theta}
\end{array}\right| \cdot\left|\begin{array}{c}
\hat{X}_{1} \\
\hat{Y}_{1} \\
\hat{Z}_{1}
\end{array}\right|
$$

Body $\hat{X}_{1}, \hat{Y}_{1}, \hat{Z}_{1}$ axes in $\hat{X}_{2}, \hat{Y}_{2}, \hat{Z}_{2}$ coordinates are given by:

$$
\begin{aligned}
& \hat{X}_{1} \\
& \hat{Y}_{1} \\
& \hat{Z}_{1}
\end{aligned}=\left|B^{T}\right| \cdot\left|\begin{array}{c}
\hat{X}_{2} \\
\hat{Y}_{2} \\
\hat{Z}_{2}
\end{array}\right|=\left|\begin{array}{ccc}
\cos \boldsymbol{\theta} & 0 & \sin \boldsymbol{\theta} \\
0 & 1 & 0 \\
-\sin \boldsymbol{\theta} & 0 & \cos \theta
\end{array}\right| \cdot\left|\begin{array}{c}
\hat{X}_{2} \\
\hat{Y}_{2} \\
\hat{Z}_{2}
\end{array}\right|
$$

This says that

$$
\begin{aligned}
& \hat{X}_{1}=\hat{X}_{2} \cos \theta+\hat{Z}_{2} \sin \theta \\
& \hat{Y}_{1}=\hat{Y}_{2} \\
& \hat{Z}_{1}=-\hat{X}_{2} \sin \theta+\hat{Z}_{2} \cos \theta
\end{aligned}
$$

Roll is defined as the rotation about the new \hat{X}_{2} axis that was created when we pitched. We roll about the \hat{X}_{2} axis to give us the final $\hat{X}_{T}, \hat{Y}_{T}, \hat{Z}_{T}$ body axes in Earth coordinates.

$$
\left.\begin{align*}
& \hat{X}_{T} \tag{7}\\
& \hat{Y}_{T}=|C| \cdot\left|\begin{array}{c}
\hat{X}_{2} \\
\hat{Z}_{T} \\
\hat{Y}_{2} \\
\hat{Z}_{2}
\end{array}\right|=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right| \cdot\left|\begin{array}{c}
\hat{X}_{2} \\
\hat{Y}_{2} \\
\hat{Z}_{2}
\end{array}\right|, ~ . \mid
\end{align*} \right\rvert\,
$$

Body $\hat{X}_{2}, \hat{Y}_{2}, \hat{Z}_{2}$ axes in $\hat{X}_{T}, \hat{Y}_{T}, \hat{Z}_{T}$ coordinates are given by:

$$
\begin{align*}
& \hat{X}_{2} \tag{8}\\
& \hat{Y}_{2} \\
& \hat{Z}_{2}
\end{align*}=\left|C^{T}\right| \cdot\left|\begin{array}{c}
\hat{X}_{T} \\
\hat{Y}_{T} \\
\hat{Z}_{T}
\end{array}\right|=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right| \cdot\left|\begin{array}{c}
\hat{X}_{T} \\
\hat{Y}_{T} \\
\hat{Z}_{T}
\end{array}\right|
$$

This says that:

$$
\begin{align*}
& \hat{X}_{2}=\hat{X}_{T} \\
& \hat{Y}_{2}=\hat{Y}_{T} \cos \phi-\hat{Z}_{T} \sin \phi \tag{9}\\
& \hat{Z}_{2}=\hat{Y}_{T} \sin \phi+\hat{Z}_{T} \cos \phi
\end{align*}
$$

And

$$
\begin{aligned}
& \hat{X}_{T} \\
& \hat{Y}_{T}=|C| \cdot|B| \cdot|A| \cdot\left|\begin{array}{c}
X_{E} \\
\hat{Z}_{T} \\
Z_{E}
\end{array}\right|, ~
\end{aligned}
$$

Each rotation can be considered independently about the $\hat{Z}_{E}, \hat{Y}_{1}, \hat{X}_{2}$ axes respectively. Therefore, their rates can be summed to derive an angular velocity vector.

$$
\begin{equation*}
\omega=\dot{\boldsymbol{\psi}} \hat{Z}_{E}+\dot{\boldsymbol{\theta}} \hat{X}_{1}+\dot{\boldsymbol{\phi}} \hat{X}_{2} \tag{11}
\end{equation*}
$$

Where $\dot{\boldsymbol{\psi}}$ is the yaw rate, $\dot{\boldsymbol{G}}$ is the pitch rate, and $\dot{\boldsymbol{\phi}}$ is the roll rate.
To create a velocity vector in body coordinates, we need to express the angular velocity components in Equation 11 in body coordinates ($\hat{X}_{T}, \hat{Y}_{T}, \hat{Z}_{T}$) to create the angular velocity (pqr) vector. Consider Equations 3 and 6:

$$
\begin{equation*}
\hat{Z}_{E}=\hat{Z}_{1}=-\hat{X}_{2} \sin \theta+\hat{Z}_{2} \cos \theta \tag{12}
\end{equation*}
$$

Substitute \hat{X}_{2} and \hat{Z}_{2} from Equations 9, you get

$$
\begin{align*}
& \hat{Z}_{E}=\hat{Z}_{1}=-\hat{X}_{T} \sin \theta+\left(\hat{Y}_{T} \sin \phi+\hat{Z}_{T} \cos \phi\right) \cos \theta \\
& \hat{Z}_{E}=-\hat{X}_{T} \sin \theta+\hat{Y}_{T} \sin \phi \cos \theta+\hat{Z}_{T} \cos \phi \cos \theta \tag{13}
\end{align*}
$$

Now, we have \hat{Z}_{E} in terms of body coordinates. Now consider the second component of Equation 11. Substitute the $\hat{\boldsymbol{Y}}_{1}$ using Equations 6 and 9:

$$
\begin{equation*}
\hat{Y}_{1}=\hat{Y}_{2}=\hat{Y}_{T} \cos \phi-\hat{Z}_{T} \sin \phi \tag{14}
\end{equation*}
$$

Now, we have $\hat{\boldsymbol{Y}}_{1}$ in terms of body coordinates. And finally consider the third component of Equation 11. Substitute the \hat{X}_{2} with \hat{X}_{T} from Equation 9:

$$
\begin{equation*}
\hat{X}_{2}=\hat{X}_{T} \tag{15}
\end{equation*}
$$

Substitute the unit vectors in equation 10 with equations 13,14 , and 15.
$\omega=\dot{\boldsymbol{\psi}}\left(-\hat{X}_{T} \sin \theta+\hat{Y}_{T} \sin \phi \cos \theta+\hat{Z}_{T} \cos \phi \cos \theta\right)+\dot{\theta}\left(\hat{Y}_{T} \cos \phi-\hat{Z}_{T} \sin \phi\right)+\dot{\phi}\left(\hat{X}_{T}\right)$
Now rearrange Equation 16 to combine the $\hat{X}_{T}, \hat{Y}_{T}, \hat{Z}_{T}$ components so $\omega=\hat{X}_{T}(\dot{\phi}-\dot{\psi} \sin \theta)+\hat{Y}_{T}(\dot{\theta} \cos \phi+\dot{\psi} \sin \phi \cos \theta)+\hat{Z}_{T}(-\dot{\theta} \sin \phi+\dot{\psi} \cos \phi \cos \theta)$ 17

Angular velocity is a vector with components that are functions of pitch, roll, yaw rate, pitch rate, and roll rate. The resulting components agree with the $\boldsymbol{\omega}_{\boldsymbol{z}}$, $\boldsymbol{c}_{\boldsymbol{y}}$, and $\boldsymbol{\omega}_{\mathbf{z}}$ values given in the IEEE std. P1278.1/d8.

