Quaternion differentiation

Quaternion differentiation's formula connects time derivative of component of quaternion $q(t)$ with component of vector of angular velocity $\mathrm{W}(\mathrm{t})$. Quaternion $\mathrm{q}(\mathrm{t})=\left(\mathrm{q}_{0}(\mathrm{t}), \mathrm{q}_{1}(\mathrm{t}), \mathrm{q}_{2}(\mathrm{t}), \mathrm{q}_{3}(\mathrm{t})\right.$) determines attitude of rigid body moving with one fixed point, vector of angular velocity $\mathrm{W}(\mathrm{t})=($ $\mathrm{W}_{\mathrm{x}}(\mathrm{t}), \mathrm{W}_{\mathrm{y}}(\mathrm{t}), \mathrm{W}_{\mathrm{z}}(\mathrm{t})$) determines angular velocity of this body at point of time t . point of time. Norm of quaternion $\mathrm{q}(\mathrm{t})$ is unit, i.e.
$q_{0}^{2}(t)+q_{1}^{2}(t)+q_{2}^{2}(t)+q_{3}^{2}(t)=1$
(1)

Vector $\mathrm{W}(\mathrm{t})$ can be represented as quaternion with zero scalar part, i.e
$W(t)=\left(0, W_{x}(t), W_{y}(t), W_{z}(t)\right)$
(2)

Quaternion differentiation's formula can be represented as

$$
\frac{d q(t)}{d t}=\frac{1}{2} W(t) q(t)
$$

(3)

Using quaternion multiplication rule
$\frac{d q_{0}(t)}{d t}=-\frac{1}{2}\left(W_{x}(t) q_{1}(t)+W_{y}(t) q_{2}(t)+W_{z}(t) q_{3}(t)\right)$
$\frac{d q_{1}(t)}{d t}=\frac{1}{2}\left(W_{x}(t) q_{0}(t)+W_{y}(t) q_{3}(t)-W_{z}(t) q_{2}(t)\right)$
$\frac{d q_{2}(t)}{d t}=\frac{1}{2}\left(W_{y}(t) q_{0}(t)+W_{z}(t) q_{1}(t)-W_{x}(t) q_{3}(t)\right)$
$\frac{d q_{3}(t)}{d t}=\frac{1}{2}\left(W_{z}(t) q_{0}(t)+W_{x}(t) q_{2}(t)-W_{y}(t) q_{1}(t)\right)$
(4)

Below formula (3) brief and vigorous derivation follows.
Let R_{0} is any given vector (quaternion with zero scalar part) fixed in rigid body at initial moment of time t_{0}, R_{t} is the same vector (quaternion) at moment of time t. Then, obviously
$R_{t}=q(t) R_{0} q^{-1}(t)$
(5)

If we differentiate (5) then

$$
\frac{d R_{t}}{d t}=\frac{d q(t)}{d t} R_{0} q^{-1}(t)+q(t) R_{0} \frac{d q^{-1}(t)}{d t}
$$

(6)

From (5) and (6) we have

$$
\begin{equation*}
\frac{d R_{t}}{d t}=\frac{d q(t)}{d t} q^{-1}(t) R_{t}+R_{t} q(t) \frac{d q^{-1}(t)}{d t} \tag{7}
\end{equation*}
$$

Because norm of quaternion $q(t)$ is unit, i.e.
$q(t) q^{-1}(t)=1$
(8)
we have

$$
\frac{d q(t)}{d t} q^{-1}(t)+q(t) \frac{d q^{-1}(t)}{d t}=0
$$

(9)

It follows from (7) and (9) that
$\frac{d R_{t}}{d t}=\frac{d q(t)}{d t} q^{-1}(t) R_{t}-R_{t} \frac{d q(t)}{d t} q^{-1}(t)$
(10)

Let
$p(t)=\frac{d q(t)}{d t} q^{-1}(t)$

Obviously
$q^{-1}(t)=S\left(q^{-1}(t)\right)+V\left(q^{-1}(t)\right)=q_{0}(t)-\left(q_{1}(t), q_{2}(t), q_{2}(t)\right)$
(12)
where $S()=$ scalar part, $V()=$ vector part of quaternion
Scalar part $S(p(t))$ of quaternion $p(t)$ equals
$S(p(t))=\frac{d q_{0}(t)}{d t} q_{0}+\frac{d q_{1}(t)}{d t} q_{1}+\frac{d q_{2}(t)}{d t} q_{2}+\frac{d q_{3}(t)}{d t} q_{3}=0$
because norm of quaternion $\mathrm{q}(\mathrm{t})$ is unit.
It follows that $\mathrm{p}(\mathrm{t})$ is vector. Because R_{t} is also vector
$p(t) R_{t}-R_{t} p(t)=2\left[p(t) R_{t}\right]$
(13)
where [ab]= cross-product of vector a and vector b.

On the other hand, variable $\frac{d R_{t}}{d t}$ is velocity of point of rigid body with one fixed point. Hence $\frac{d R_{t}}{d t}=\left[W(t) R_{t}\right]$
(14).

Because R_{t} is arbitrary vector, it follows from (10), (11), (13) and (14)
$W(t)=2 p(t)=2 \frac{d q(t)}{d t} q^{-1}(t)$

It follows from (15) finally that
$\frac{d q(t)}{d t}=\frac{1}{2} W(t) q(t)$
(3)

It is necessary to draw attention: in formula (3) angular velocity vector $\mathrm{W}(\mathrm{t})=\left(\mathrm{W}_{\mathrm{X}}(\mathrm{t}), \mathrm{W}_{\mathrm{Y}}(\mathrm{t})\right.$, $\mathrm{W}_{\mathrm{Z}}(\mathrm{t})$) is represented by projections on axes of unmoving system of coordinates. If we apply the projections on axes of moving system of coordinates for the same angular velocity vector then obviously:
$\left(0, W_{X}(t), W_{Y}(t), W_{Z}(t)\right)=q(t)\left(0, W_{x}(t), W_{y}(t), W_{z}(t)\right) q^{-1}(t)$
(16)

Where $\mathrm{W}_{\mathrm{x}}(\mathrm{t}), \mathrm{W}_{\mathrm{y}}(\mathrm{t}), \mathrm{W}_{\mathrm{z}}(\mathrm{t})$ are projections of angular velocity vector on axes of moving system of coordinates.
It follows from (3) and (16) that
$\frac{d q(t)}{d t}=\frac{1}{2} q(t) \bar{W}(t)$
$\bar{W}(t)=\left(W_{x}(t), W_{y}(t), W_{z}(t)\right)$
(17)

Finally, consider example of formulas (3) and (17) using for so-called conic moving. In this case quaternion $q(t)$ equals:

$$
\begin{align*}
& q(t)=\left(\cos \left(\frac{\beta}{2}\right), \sin \left(\frac{\beta}{2}\right)(\cos (\omega t), \sin (\omega t), 0)\right) \\
& q^{-1}(t)=\left(\cos \left(\frac{\beta}{2}\right),-\sin \left(\frac{\beta}{2}\right)(\cos (\omega t), \sin (\omega t), 0)\right) \\
& \frac{d q(t)}{d t}=\left(0, \omega \sin \left(\frac{\beta}{2}\right)(-\sin (\omega t), \cos (\omega t), 0)\right) \tag{18}
\end{align*}
$$

Accordingly (3) and (17) projections of angular velocity vector on axes of unmoving and moving systems of coordinates equals:
$\left(W_{X}(t), W_{Y}(t), W_{Z}(t)\right)=2 \frac{d q(t)}{d t} q^{-1}(t)=(-\omega \sin (\beta) \sin (\omega t), \omega \sin (\beta) \cos (\omega t), \omega(1-\cos (\beta)))$
$\left(W_{x}(t), W_{y}(t), W_{z}(t)\right)=2 q^{-1}(t) \frac{d q(t)}{d t}=(-\omega \sin (\beta) \sin (\omega t), \omega \sin (\beta) \cos (\omega t), \omega(\cos (\beta)-1))$

