
Quaternion differentiation 
 
Quaternion differentiation’s formula connects time derivative of component of quaternion q(t) 
with component of vector of angular velocity W(t).  Quaternion q(t)=(q0(t), q1(t), q2(t), q3(t)) 
determines attitude of rigid body moving with one fixed point, vector of angular velocity W(t)=( 
Wx(t), Wy(t), Wz(t)) determines angular velocity of this body at point of time t. point of time. 
Norm of quaternion q(t) is unit, i.e. 
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Vector W(t) can be represented as quaternion with zero scalar part, i.e 
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Quaternion differentiation’s formula can be represented as 
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Using quaternion multiplication rule  
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Below formula (3) brief and vigorous derivation follows. 
 
Let R0 is any given vector (quaternion with zero scalar part) fixed in rigid body at initial moment 
of time t0, Rt is the same vector (quaternion) at moment of time t. Then, obviously 
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If we differentiate (5) then 
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From (5) and (6) we have 
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Because norm of quaternion q(t) is unit, i.e. 
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we have 
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It follows from (7) and (9) that 
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Let 
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Obviously 
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where S() =scalar part, V()=vector part of quaternion 
 
Scalar part S(p(t)) of quaternion p(t) equals 
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because norm of quaternion q(t) is unit. 
 
It follows that p(t) is vector. Because Rt is also vector  
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where [ab]= cross-product of vector a and vector b. 
 



On the other hand, variable 
dt

dRt  is velocity of point of rigid body with one fixed point. Hence 
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Because Rt  is arbitrary vector, it follows from (10), (11), (13) and (14) 
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It follows from (15) finally that 
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It is necessary to draw attention: in formula (3) angular velocity vector W(t)=(WX(t), WY(t), 
WZ(t)) is represented by projections on axes of unmoving system of coordinates. If we apply the 
projections on axes of moving system of coordinates for the same angular velocity vector then 
obviously: 
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Where Wx(t), Wy(t), Wz(t) are projections of angular velocity vector on axes of moving system 
of coordinates. 
It follows from (3) and (16) that 
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Finally, consider example of formulas (3) and (17) using for so-called conic moving. In this case 
quaternion q(t) equals: 
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Accordingly (3) and (17) projections of angular velocity vector on axes of unmoving and moving 
systems of coordinates equals: 
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