Quaternion differentiation
Quaternion differentiation’s formula connects time derivative of component of quaternion q(t)
with component of vector of angular velocity W(t). Quaternion q(t)=(qo(t), qi(t), g2(t), gs(t))
determines attitude of rigid body moving with one fixed point, vector of angular velocity W(t)=(

Wi (t), Wy(t), W,(t)) determines angular velocity of this body at point of time t. point of time.
Norm of quaternion q(t) is unit, i.e.

Ao (1) + 07 (1) + 05 (1) + 05 (1) =1
(1)
Vector W(t) can be represented as quaternion with zero scalar part, i.e

W () = (O,W, (1), W, (1), W, (1)
(2)

Quaternion differentiation’s formula can be represented as

dg(t) _ 1
ot ZW(t)Q(t)
3)

Using quaternion multiplication rule

% = —%(\Nx (t)a, (1) +W, (t)q, (1) +W, (t)d (1))
% B %(WX (), (t) +W, ()5 (t) ~W, (), (1))
dqét(t) - %(Wy ()g, (1) +W, (1)q, (1) - W, (t)d (1))
_dngt(t) = %(Wz (), (1) +W, (), () W, (t)a, (1)
(4)

Below formula (3) brief and vigorous derivation follows.

Let Ro is any given vector (quaternion with zero scalar part) fixed in rigid body at initial moment
of time to, R; is the same vector (quaternion) at moment of time t. Then, obviously

Rt =q(t) Roq -+ )
)

If we differentiate (5) then

dR, dq(t) ,
—Lt="27R t )R
dt dt od- (M) +a)R,

dg~ (1)
dt




(6)

From (5) and (6) we have

dR, _dq(t) = OIGl’l(t)
g = gt ¢ OR+RaA®
()

Because norm of quaternion q(t) is unit, i.e.

q(t)g () =1
(8)

we have

da(t) g
dt

©)

It follows from (7) and (9) that
dr, _ dq(t) 4 (OR - R, da(t) 0 (0)

)+t dq_ W _o

dt dt dt
(10)
Let
p) = Mg
(11)
Obviously

(1) =S(a (1) +V(a () = do (t) — (A, (1), 4, (1), 4 (1))
(12)
where S() =scalar part, VV()=vector part of quaternion

Scalar part S(p(t)) of quaternion p(t) equals

60, 60, w0, W0

S(p(’[)) Qo + dt 1 dt 2 dt J; = 0

because norm of quaternion q(t) is unit.

It follows that p(t) is vector. Because R; is also vector

p(t)Rt - Rt p(t) = 2[p(t)Rt]
(13)
where [ab]= cross-product of vector a and vector b.



On the other hand, variable % is velocity of point of rigid body with one fixed point. Hence
dR,
— =W ()R

™ W()R,]

(14).

Because R is arbitrary vector, it follows from (10), (11), (13) and (14)

W) = 2p(t) = 2%&(0

(15)

It follows from (15) finally that

dg(t) 1
it ZW(t)CI(t)
3)

It is necessary to draw attention: in formula (3) angular velocity vector W(t)=(Wx(t), W(t),
Wy (1)) is represented by projections on axes of unmoving system of coordinates. If we apply the
projections on axes of moving system of coordinates for the same angular velocity vector then
obviously:

(0,W, (t),W, (1), W, (1)) = a(t)(O,W, (), W, (1), W, (1))a " ()

(16)

Where W (t), Wy (t), W,(t) are projections of angular velocity vector on axes of moving system
of coordinates.

It follows from (3) and (16) that

da(t) 1

ot EQ(t)W t)

W (t) = W, (t),W, (t),W, (1))

(17)
Finally, consider example of formulas (3) and (17) using for so-called conic moving. In this case
quaternion q(t) equals:

qt) = (cos(é],sin[gj(cos(a)t),sin(a)t),O))

q(t) = (cos(gj,—sin(gj(cos(a)t),sin(a)t),O))
da(t) B

dt 2
(18)

:(O,wsin( }(—sin(a)t),cos(wt),O))



Accordingly (3) and (17) projections of angular velocity vector on axes of unmoving and moving
systems of coordinates equals:

(Wi (1), Wy (1), W (1) = Z%QIG) = (-wsin(p)sin(at), wsin(f) cos(at), o(1 - cos(5)))

dq(t)

W, (1),W, (t),W, (1)) =29 (1) 4t = (—wsin(B)sin(awt), wsin(S) cos(wt), w(cos(S) —1))



