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Nomenclature 
ê   =  normalized Euler rotation axis 
i<1-3> = indices of first, second and third Euler rotation,  
  e.g. if rotation sequence is 3-2-1, i1 is 3, i2 is 2, and i3 is 1  
i<1-3>n = next circular index following i<1-3>, e.g. if i2 = 3, i2n = 1 
i<1-3>nn = next circular index following i<1-3>n, e.g. if i2n = 3, i2nn = 2 
Q   = Quaternion = 

4321
      qqqq  

! 

R   = operator: rotation of vector by a quaternion 
vi  = unit vector along the ith Euler rotation axis  
vin  = unit vector along the in

th Euler rotation axis 
V    = a general 3 component vector; if used in quaternion multiplication, augmented with a fourth element  
   equal to zero 

! 

"   = vector cross product operator 

! 

"  <1-3>    = Euler angles 
!    = Euler rotation angle 

! 

"   = quaternion multiplication 
*  = superscript operator: conjugate 

! 

•  = vector dot product operator 
 

Introduction 
onversion of a set of Euler angles, using any arbitrary rotation order, to the equivalent quaternion is a simple 

exercise, consisting of generating the three quaternions corresponding to the three Euler angles and performing the 

quaternion multiplications in the appropriate order. Conversion of a quaternion to the equivalent Euler angles is a 

somewhat more complex task. While no literature survey can be all inclusive, all references to this conversion 

process found recently, references [1-3] are typical, perform the conversion by generating the rotation matrix (the 

direction cosine matrix) both from quaternions and from the Euler angles for a particular rotation sequence, equating 

similar matrix elements and solving for the Euler angles in terms of the quaternion elements.  This process is 

algebraically complex, requires a different formulation for each of the twelve rotation sequences and is 

mathematically inelegant. 

 This technical note presents a method of converting a quaternion to the Euler angles for any specified rotation 

sequence utilizing geometric methods. The method requires only minor logical differences for repeated and non-

repeated rotation sequences and for circular and non-circular order sequences. Also, in support of the method, 

several definitions and fundamental quaternion and vector mathematical constructs are presented without derivation 

or proof. A single numerical example is included to support understanding of the method. 

C 



 

Definitions and Mathematical Constructs 
 
Euler Angles 

 Leonard Euler was one of the giants of 18th century mathematics. Many developments are attributed to him 

including several designated as Euler’s Theorem. The one of interest here states “Any two independent orthonormal 

coordinate frames can be related by a sequence of rotations (not more than three) about coordinate axes, where no 

two successive rotations may be about the same axis” [2]. The angles of these three rotations are commonly defined 

as Euler angles and the axes of rotation designated as axes 1, 2, and 3 or x, y, and z. The order in which the axes of 

rotation are taken is referred to as the Euler rotation sequence; there are twelve of these sequences: 1-2-3 (x, y, z), 1-

2-1 (x, y, x) and so on including all combinations with no two succeeding rotations about the same axis. Figure 1 

depicts, as an example, a 3-1-2, or zxy rotation sequence where the z rotation Euler angle is 30 deg, the x angle is 45 

degrees and the y angle is 45 degrees. 

 

Fig. 1 Euler Rotation Example: 3-1-2 or zxy Euler Rotation Sequence 

Euler angles = 30, 60, 45 degrees 

For this example: 

 i1 = 3 (1) 

 i2 = 1 (1a) 

 i3 = 2 (1b) 

 

 Euler angles as applied to the Maritime and Aerospace industries are often called the roll or bank angle, about 

the x axis, the pitch or attitude angle, about the y axis, and the yaw or heading angle, about the z axis; the reference, 

or initial, coordinate frame is frequently z axis positive down, x axis horizontal North and the y axis located to form 



a right handed coordinate frame. As such, they provide a certain level of intuitive understanding; however, they also 

have two inherent disadvantages: 

1) Ambiguity - For small values of Euler angles the Euler Rotation Sequence may not be important. However, for 

large angles, the rotation sequence becomes critical; for example, for a given set of three Euler angles, the result of a 

1-2-3 rotation sequence is very different from that of a 3-2-1 sequence. There is no industry accepted standard 

rotation sequence; thus, there is an inherent risk of mistaken assumption of rotation sequence in performing analysis 

and communicating using Euler angles. 

2) Singularities - Any set of Euler angles where the second rotation aligns the axes of the first and third rotations 

causes a singularity. For an Euler Rotation Sequence where the first and third axes are the same, called a repeated 

axis sequence, singularities occur for second rotation angles of zero and 180 degrees; for non-repeated axis 

sequences singularities occur at +/- 90 degrees. The mechanical manifestation of this mathematical singularity is the 

dreaded "gimbal lock" of the stable reference platform made infamous in the movie Apollo 13. At a singularity a 

number of potentially disastrous effects occur, including: the first and third rotations degenerate into a single 

rotation and the angular derivatives, or equations of motion, become infinite. This was not a serious problem for 

mariners and most aeronauts before the advent of the space age; if a ship had achieved a pitch angle of 90 degrees, 

the fact that its Euler angle derivatives had become infinite was probably of little concern to the crew. However, 

since, in general, all attitudes are equally likely for spacecraft, Euler angles do not lend themselves well to analysis 

applied to astronautics or to highly maneuverable aircraft. 

 
Quaternions   

 Another of Euler’s Theorems states: the most general displacement of a rigid body with one point fixed is a 

rotation about some axis [1]. Thus any rotation of a rigid body can be described by defining an axis of rotation, often 

called the Euler rotation axis, and a rotation angle, the Euler rotation angle. In October of 1843, William Rowan 

Hamilton formulated quaternions [3], utilizing this Euler’s theorem, as a method of representing rotations. A 

common, although not universal, definition of a quaternion is 
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 The four elements are not independent, being related by the requirement that |Q | = 1 
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Fig. 2 Euler Rotation Axis and Angle 
 

 Figure 2 graphically depicts the Euler rotation axis and angle (not to be confused with the Euler angles). 

 It is interesting to note that the Euler rotation axis is unchanged by any quaternion rotation about this axis and is, 

in general, the only vector that is unchanged. 

For the example depicted in Fig. 1: 

 Q  = 0.360423  0.439679  0.391904  0.723317 (6) 

 ê =  0.5220  0.6367  0.5676 (7) 

      and 

 

! 

" = 43.671 (8) 
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Quaternion Multiplication 

 

Fig. 3  Quaternion Multiplication Rules 

 Quaternion multiplication is commonly performed using the form shown in Eq. (4), above. The elements in each 

quaternion are multiplied by all elements in the other utilizing the rules shown, above, in Figure 3 which depicts the 

rules for quaternion multiplication both graphically and using hyper complex notation. 

 Quaternion multiplication is associative, that is, 

 

 ( ) ( )cbacbacba QQQQQQQQQ !!=!!=!!  (9) 

 
 Quaternion multiplication is not, in general, commutative, so 

 abba QQQQ !"!  (10) 

 

Quaternion Identity, and Inverse or Conjugate   

The quaternion multiplicative identity is simply 

 0.10.00.00.0=IQ  (11) 

and 
 

 QQQQQ II =!=!  (12) 

 
The multiplicative inverse, or conjugate, of a quaternion is 
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 i2 = j2 = k2 = ijk = -1 
ij = k               ji = -k 
jk = i               kj = -i 
ki = j               ik =  -j 
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k 

i j 

k 

+ - 



 
and 
 

 IQQQQQ =!=!
**  (14) 

Multiplication of a quaternion by its conjugate and by the identity quaternion are among the few multiplicative 

operations that are commutative. 

Rotating a Vector 

A vector, V , can be rotated about a given axis by a given angle using the quaternion, Q , generated using that 

axis and angle: 
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V
rot

=Q RV =Q"V "Q
* (15) 

 
 

 
 

 
 
 

 
 

 

 

 

Fig. 4 Vector before and after rotation  

 
As an example, Fig. 4 graphically depicts the vector 1, 1, 1 before and after being rotated by the quaternion 

0.0  0.0  0.707107 0.707107 which represents a 90 degree rotation about the Z, or 3, axis; the resultant rotated vector 

is -1, 1, 1. 

Interestingly, transformation of a vector from one coordinate frame to another is similar to the rotation operation 

except that the conjugate of the quaternion is used; the transformation operation is not used in the present technical 

note. 

 

Quaternion to Euler Angle Conversion 
Fundamental Concept 

 

 



The underlying concept of the present method of converting a given quaternion, GQ , to the corresponding Euler 

angles of the given rotation sequence, i1 i2 i3 , is to perform the quaternion rotation operations on selected unit 

vectors and derive the required Euler angles from the results. 

Calculating the First and Second Euler angles 

 The first step in the current method is performing the quaternion rotation operation on a unit vector along the 

third, or i3 , Euler rotation axis. 

 

! 

v3
rot

=Q
G
R v3  (16) 

 Returning to the example shown in Fig. 1 and starting with the quaternion equivalent to the Euler rotations: 

  GQ  = 0.360423  0.439679  0.391904  0.723317 (17) 

and, for the given rotation sequence 3-1-2 

 0103 =v  (18) 

Performing the operation of Eq. (15) 

 =
rot

v3 -0.2500  0.4330  0.8660 (19) 

 

 
Fig. 5 Euler Rotation Axis and Rotated Third Euler Rotation Axis, 

! 

v3
rot

 

 Since the position of vector 
rot

v3  is unaffected by the third Euler angle, the first two Euler angle can be 

determined from this vector. Visual inspection of Fig. 5 indicates that the first Euler angle, 

! 

" 1 , the rotation about 

x y

z

rotv3
Euler
Rotation
Axis



the i1 or z axis, is the four quadrant inverse tangent of  -
rot

v3 (1) and 
rot

v3 (2), or -
rot

v3 (i1n ) and 
rot
v
3

(i1nn), 

restricted to ±180 deg, and that the second Euler angle, 

! 

" 2 , the rotation about the i2 or y axis, is the inverse sine of 

rot
v3 (3), or 

rot
v3 (i1). Performing these two operations using 

rot
v3  from the example returns  

 

! 

" 1 = 30 degrees (20) 

 

! 

" 2 = 60 degrees (21) 

 This process is generalized via a similar development to one of four similar processes, depending on whether the 

Euler rotation sequence has the first and third rotation about the same axis, a repeated axis sequence, and whether 

the first and second rotation axes are in circular order, that is, 12, 23, or 31. 

Non-circular, Repeated Axis 

 This case includes the three Euler rotation sequences 131, 212, and 323. 

 

! 

" 1 = tan-1 (
rot

v3 (i1nn) , rot
v
3

(i1n)) (22) 

 

! 

" 2 = cos-1 (
rot
v
3

(i1 )) (23) 

Non-circular, Non-repeated axis 

 This case includes the three Euler rotation sequences 132, 213, and 321. 

 

! 

" 1 = tan-1 (
rot
v
3

(i1nn) , rot
v3 (i1n)) (24) 

 

! 

" 2 = -sin-1 (
rot

v3 (i1 )) (25) 

Circular, Repeated Axis 

This case includes the three Euler rotation sequences 121, 232, and 313. 

 

! 

" 1 = tan-1 (
rot

v3 (i1n) , - rot
v3 (i1nn)) (26) 

 

! 

" 2 = cos-1 (
rot

v3 (i1 )) (27) 

Circular, Non-repeated Axis 

This case includes the three Euler rotation sequences 123, 231, and 312. 

 

! 

" 1 = tan-1 (-
rot

v3 (i1n) , rot
v3 (i1nn)) (28) 

 

! 

" 2 = -sin-1 (
rot

v3 (i1 )) (29) 



 

Calculating the Third Euler Angle 

 Having calculated the first two Euler angles, 

! 

" 1 and 

! 

" 2 , the third is calculated by generating two vectors whose 

only difference is that effected by the third rotation and deriving the included angle between the two; this is effected 

via the following procedure: 

Generate Quaternion from First Two Euler Angles 

 First generate the two quaternions representing the two Euler angles. Using the nomenclature of Eqs. (2) 

 
1
Q  = 0.0  0.0  0.0  cos(

! 

" 1/2) (30) 

except 
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" 1/2) (31) 

and 

 
2
Q  = 0.0  0.0  0.0  cos(

! 

" 2/2) (32) 

except 

 
2i
q = sin(

! 

" 2/2) (33) 

Then 

 
12
Q  =  

21
QQ !   (34) 

Generate the unit vector along the i3n axis. 

 
n

v3  = 0.0  0.0  0.0 (35) 

except 

 
n

v3 (i3n) = 1.0 (36) 

Perform Quaternion Rotations 
Perform the quaternion rotation operation on 

n
v3 twice, using both 

12
Q  and GQ . 

 
12

3
n

v  = nvQ 3
12
!  (37) 

 
nG

v3  = nG vQ 3!  (38) 

Calculate the Included Angle  

The magnitude of the third Euler angle is then the angle between these two vectors. 



 | 

! 

" 3  | = cos-1(
12

3
n

v

! 

• 
nG

v3 ) (39) 

The sign, or sense, of 

! 

" 3 is determined by performing the cross product of 
12

3
n

v  and 
nG

v3  and determining if 

this vector is parallel or anti-parallel to 
rot

v3  . 

 
c
v  =  

12
3
n

v

! 

"  
nG

v3  (40) 

 m = 
c
v  

! 

• 
rot

v3  (41) 

and finally 

 

! 

" 3 = sign(m) | 

! 

"  3 | (42) 

Returning to the example of Fig. 1, using Eqs. (29-41) 

 
1
Q  =  0.0  0.0  0.2588  0.9659 (43) 

 
2
Q  =  0.0  0.5  0.0  0.8660 (44) 

 
12
Q     =  0.4830  0.1294  0.2241  0.8365 (45) 

 
n

v3  =  0.0  0.0  1.0  (46) 

 
12

3
n

v = 0.4330  -0.7500  0.5000 (47) 

 
nG

v3  = 0.9186  -.1768  0.3536 (48) 

 
12

3
n

v

! 

• 
nG

v3  =  0.7071 (49) 

 | 

! 

" 3  | = 45 degrees (50) 

 
12

3
n

v

! 

"  
12

3
n

v  =  -0.1768 0 .3062 0 .6124 (51) 

  

! 

" 3   = 45 degrees (52) 

 This agrees with the original Euler angles from the example. 

Implementation and Testing 

 The author implemented the present method in a MATLAB* function as well as a companion function that 

converts a set of three Euler angles and a specified Euler rotation sequence to the equivalent quaternion. A driver 

routine was then developed which executed the two functions sequentially and then compared the quaternion input 

to the first function to the quaternion output of the second. Each input quaternion was used to generate all twelve 

                                                         
* MATLAB is a registered trademark of The Mathworks 



sets of Euler rotation sequence angles; each of these twelve sets of Euler angles was then converted back to the 

equivalent quaternion and compared to the original quaternion. The comparison was effected by multiplying the 

input quaternion by the conjugate of the output quaternion and summing the absolute values of the first three 

elements of the resultant quaternion; the comparison was considered successful if this sum was less than 10-6  

implying that the two quaternions were a very close match. This test system was exercised in two modes as 

described, below; in addition, a small number of resultant test cases were then graphically modeled using SOAP 

(Satellite Orbit Analysis Program). 

Selected Rotation Test Mode 

 A series of tests were run wherein a set of Euler angles was selected with the second angle at a singular point for 

each Euler rotation sequence and the first and third angles selected randomly between ±180; the input test 

quaternion was then generated from these Euler angles. Comparison was made between both the selected and output 

Euler angles and the input and output quaternion. 

Random Rotation Test Mode 

 Another set of tests was run with quaternions generated by a software routine that, for each test case, selected 

four numbers at random between ±1.0, then normalized the set of four. Several hundred cases were generated by this 

method and tested. 

SOAP Testing 

 A small number of cases were input to SOAP and the results verified visually. Two identical solid models were 

created, one based on a quaternion coordinate frame, the other on three Euler angle rotations. The quaternion and 

Euler angles from several test cases were input and the orientation of the two bodies compared. Only a small number 

of cases were implemented because of the time involved in manually entering data. 

Testing Results 

 Without exception, all test cases compared successfully in that the input and output quaternions matched. In the 

selected rotation test mode, as might be expected, the first and third Euler angles did not always match those of the 

original Euler angles used to generate the input quaternion.  However, in those cases where they did not match, the 

sum of the first and third resultant Euler angles matched that of the original Euler angle set. 

Conclusion 
 Even within the technical community, quaternions have acquired the reputation of being difficult to understand.  

The method presented in this technical note may serve to increase the level of understanding within the community 



and will provide another avenue for converting quaternions, which lend themselves well to various aerospace 

analytical tasks, to Euler angles, with which the community may be more familiar, but which increase the difficulty 

and risk of many types of analysis. 
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